เทคนิคในการสุ่มตัวอย่าง

Screenshot 2563-04-13 at 01.46.32.png

การสุ่มตัวอย่างโดยไม่ได้อาศัย ทฤษฏีความน่าจะเป็น (Non-probability sampling) 

ในบางครั้งการเลือกกลุ่มตัวอย่างโดย อาศัยความน่าจะเป็น โดยวิธีการสุ่มอาจจะไม่สามารถทำได้หรือทำได้ยาก การเลือกกลุ่มตัวอย่างโดยไม่อาศัยความน่าจะเป็นจึงถูกนำมาใช้ซึ่งการเลือก กลุ่มตัวอย่างแบบนี้จะมีลักษณะเป็นอัตวิสัย (subjective)  ซึ่งมักจะทำให้การประมาณค่าพารามิเตอร์ขาดความแม่นยำ  ดังนั้นในการเลือกกลลุ่มตัวอย่างแบบนี้มักจะใช้เมื่อไม่ต้องการอ้างอิงถึง ลักษณะประชากร ส่วนใหญ่จะใช้กับงานวิจัยสำรวจข้อเท็จจริง (Exploration research) กับกลุ่มที่มีลักษณะเฉพาะและไม่ต้องการเปรียบเทียบกับกลุ่มอื่นๆ นอกจากนี้ยังมีเหตุผลทางด้านค่าใช้จ่ายและเวลา เพราะการเลือกตัวอย่างโดยไม่อาศัยความน่าเป็นจะมีค่าใช้จ่ายและเวลาน้อยกว่า อาศัยความน่าจะเป็น            

  1. การสุ่มโดยบังเอิญ (Accidental sampling)

 เป็นการสุ่มจากสมาชิกของประชากรเป้าหมายที่เป็นใครก็ได้ที่สามารถให้ข้อมูลได้ครบถ้วน การสุ่มโดยวิธีนี้ไม่สามารถรับประกันความแม่นยำได้ ซึ่งการเลือกวิธีนี้เป็นวิธีที่ด้อยที่สุด เพราะเป็นการเลือกตัวอย่างที่มีลักษณะสอดคล้องกับนิยามของประชากรที่สามารถ พบได้และใช้เป็นอย่างได้ทันที 

  1. การสุ่มแบบโควตา (Quota sampling) 

เป็นการสุมตัวอย่างโดยจำแนกประชากรออกเป็นส่วนๆก่อน (strata)โดยมีหลักจำแนกว่าตัวแปรที่ใช้ในการจำแนกนั้นควรจะมีความสัมพันธ์ กับตัวแปรที่จะรวบรวม หรือตัวแปรที่สนใจ และสมาชิกที่อยู่แต่ละส่วนมีความเป็นเอกพันธ์  ในการสุ่มแบบโควตา นี้มีขั้นตอนการดำเนินการดังนี้

  • พิจารณาตัวแปรที่สัมพันธ์กับลักษณะของประชากรที่คำถามการวิจัยต้องการที่จะ ศึกษา เช่น เพศ ระดับการศึกษา
  • พิจารณาขนาดของแต่ละส่วน(segment)ของประชากรตามตามตัวแปร
  • คำนวณค่าอัตราส่วนของแต่ละส่วนของประชากร กำหนดเป็นโควตาของตัวอย่างแต่ละกลุ่มที่จะเลือก
  • เลือกตัวอย่างในแต่ละส่วนของประชากรให้ได้จำนวนตามโควตา
  1. การสุ่มตัวอย่างเฉพาะเจาะจง (purposive  sampling) 

หรือบางครั้งเรียกว่าการสุ่มแบบพิจารณา (judgment sampling) เป็นการสุ่มตัวอย่างโดยใช้ดุลพินิจของผู้วิจัยในการกำหนดสมาชิกของประชากร ที่จะมาเป็นสมาชิกในกลุ่มตัวอย่าง ว่ามีลักษณะสอดคล้องหรือเป็นตัวแทนที่จะศึกษาหรือไม่  ข้อจำกัดของการสุ่มตัวอย่างแบบนี้คือไม่สามารถระบุได้ว่าตัวอย่างที่เลือก จะยังคงลักษณะดังกล่าวหรือไม่เมื่อเวลาเปลี่ยนไป

  1. การสุมกลุ่มตัวอย่างตามสะดวก (convenience sampling) 

การเลือกกลุ่มตัวอย่างโดยถือเอาความสะดวกหรือความง่ายต่อการรวบรวมข้อมูล  ข้อจำกัดของการสุ่มแบบนี้จะมีลักษณะเหมือนกับการสุ่มโดยบังเอิญ

  1. การสุมตัวอย่างแบบสโนว์บอลล์  (snowball sampling) 

เป็นการเลือกตัวอย่างในลักษณะการสร้างเครือข่ายข้อมูล เรียกว่า snowball sampling โดยเลือกจากหน่วยตัวอย่างกลุ่มแรก และตัวอย่างกลุ่มนี้เสนอบุคคลอื่นที่มีลักษณะใกล้เคียงต่อๆไป

การสุ่มตัวอย่างโดยอาศัย ทฤษฏีความน่าจะเป็น (Probability Sampling)

  1. การสุ่มอย่างง่าย (Simple random sampling)
    สมาชิกทั้งหมดของประชากรเป็นอิสระซึ่งกันและกัน  แล้วสุ่มหน่วยของการสุ่ม (Sampling unit) จนกว่าจะได้จำนวนตามที่ต้องการ  โดยแต่ครั้งที่สุ่ม สมาชิกแต่ละหน่วยของประชากรมีโอกาสถูกเลือกเท่าเทียมกัน  ซึ่งก่อนที่จะทำการสุ่มนั้น จะต้องนิยามประชากรให้ชัดเจน ทำรายการสมาชิกทั้งหมดของประชากร สุ่มตัวอย่างโดยใช้วิธีที่ทำให้โอกาสในการของสมาชิกแต่ละหน่วยในการถูกเลือก มีค่าเท่ากัน ซึ่งสามารถทำได้ 2 วิธี คือ การจับฉลากและการใช้ตารางเลขสุ่ม  (table of random number) ซึ่งตัวเลขในตารางได้มาจากการอาศัยคอมพิวเตอร์กำหนดค่า หรือบางครั้งสามารถใช้วิธีการดึงตัวอย่างโดยอาศัยโปรแกรมสำเร็จรูป ในการสุ่มอย่างง่าย มีข้อจำกัดคือ ประชากรต้องนับได้ครบถ้วน (Finite population) ซึ่งบางครั้งอาจสร้างปัญหาให้กับนักวิจัย
  2. การสุ่มแบบเป็นระบบ (systematic sampling)   

ใช้ในกรณีที่ประชากรมีการจัดเรียงอย่างไม่ลำเอียง
                      1. ประชากรหารด้วยจำนวนกลุ่มตัวอย่าง (K = N/n)
                      2. สุ่มหมายเลข 1 ถึง K  (กำหนดสุ่มได้หมายเลข  r )
                      3. r จะเป็นหมายเลขเริ่มต้น ลำดับต่อไป r + K, r +2K, r + 3K,
การสุ่มแบบเป็นระบบ โอกาสถูกเลือกของตัวอย่างไม่เป็นอิสระจากกัน เพราะเมื่อตัวอย่างแรกถูกสุ่มแล้ว  ตัวอย่างหน่วยอื่นก็จะถูกกำหนดให้เลือกตามมาโดยอัตโนมัติ โดยไม่มีการสุ่ม

  1. การสุ่มแบบแบ่งชั้น (stratified random sampling)

             เป็นการสุ่มกลุ่มตัวอย่างที่แบ่งกลุ่มประชากรออกเป็นกลุ่มย่อย (subgroup or strata) เสียก่อนบน พื้นฐานของตัวแปรที่สำคัญที่ส่งผลกระทบต่อตัวแปรตาม โดยมีหลักในการจัดแบ่งกลุ่มแต่ละกลุ่มมีความเป็นเอกพันธ์ (Homogeneous) หรือกล่าวได้ว่า ในกลุ่มเดียวกันจะมีลักษณะคล้ายคลึงกันตามกลุ่มย่อยของตัวแปร  แต่จะมีความแตกต่างระหว่างกลุ่ม  จำนวนสมาชิกในกลุ่มย่อยจะถูกกำหนดให้เป็นสัดส่วน (proportion) ตามสัดส่วนที่ปรากฏในประชากร ซึ่งเรียกว่า การสุ่มแบบแบ่งชัดโดยใช้สัดสัด (proportion stratified sampling)  การสุ่มแบบแบ่งชั้นจะมีความเหมาะสมกับงานวิจัยที่สนใจความแตกต่างของลักษณะ ประชากรในระหว่างกลุ่มย่อย

  1. การสุ่มตัวอย่างแบบกลุ่ม (cluster sampling)

ในกรณีที่ประชากรมีขนาดใหญ่ การสุ่มกลุ่มตัวอย่างโดยจัดกระทำกับรายการสมาชิกทุกๆหน่วยของประชากรอาจทำ ได้ยากหรือทำไม่ได้เลย ดังนั้นแทนที่จะใช้วิธีการสุมจากทุกหน่วย นักวิจัยสามารถสุ่มจากกลุ่มที่ถูกจัดแบ่งไว้อยู่แล้ว ซึ่งวิธีการแบบนี้เรียกว่าการสุ่มแบบกลุ่ม (cluster sampling)  สิ่งที่ควรคำนึงถึงการสุ่มแบบกลุ่ม มีดังนี้

  • ความแตกต่างของลักษณะที่จะศึกษาระหว่างกลุ่ม (cluster) มีไม่มาก หรือเรียกว่ามีความเป็นเอกพันธ์ (homogeneous)
  • ขนาดของแต่ละกลุ่ม เท่ากันหรือแตกต่างกันไม่มากนัก เพราะเมื่อเลือกกลุ่มมาเป็นตัวอย่างแล้ว  การประมาณค่าพารามิเตอร์ จะมีลักษณะไม่อคติ (unbias estimation)  มากกว่า กรณีที่กลุ่มตัวอย่างในแต่กลุ่มมีขนาดแตกต่างกันมาก
  • ขนาดของกลุ่ม (cluster) ไม่มีคำตอบแน่นอนวาจำนวนหน่วยตัวอย่างที่ศึกษาในแต่ละกลุ่ม จะเป็นเท่าใด ขึ้นอยู่กับคำถามการวิจัยและความยากง่ายในการเก็บข้อมูล
  • การใช้วิธีการสุ่มแบบ multistage cluster sampling แท่นการใช้ single – stage
  • ขนาดขอกลุ่มตัวอย่างหรือจำนวนกลุ่ม (cluster) ที่ต้องการในการเทียบเคียงจากการเลือกแบบการสุ่มอย่างง่าน (simple random sampling) ในการคำนวณขนาดกลุ่มตัวอย่าง โดยใช้จำนวนทั้งหมดของกลุ่ม ที่จัดแบ่งเป็นประชาการที่นำมาใช้ในการคำนวณ 
  1. การสุ่มตัวอย่างแบบหลายขั้นตอน (Multi – stage Random Sampling)

มีวิธีการสุ่ม 4 แบบที่อธิบายไว้แล้ว คือ การสุ่มอย่างง่าย การสุ่มอย่างมีระบบ การสุ่มแบบแบ่งชั้น และการสุ่มแบบแบ่งกลุ่ม ในการทำวิจัยจริง ๆ เราอาจจะใช้วิธีการสุ่มที่ซับซ้อนมากกว่านี้ โดยหลักแล้วจะต้องพิจารณาวิธีการสุ่มทั้ง 4 แบบนี้มาใช้ให้ได้ประโยชน์สูงสุดเพื่อให้ได้กลุ่มตัวอย่างที่ผู้วิจัยต้องการอย่างแท้จริง เรียกว่าการสุ่มแบบหลายขั้นตอน

Share:

Facebook
Twitter
Pinterest
LinkedIn

ขอคำปรึกษา

Tag : การทำ is จ้างทำ is จ้างทำวิจัย จ้างทำวิทยานิพนธ์ จ้างทํางานวิจัย จ้างทําวิจัย ป.ตรี ราคา จ้างทําวิจัยราคา จ้างทําวิจัยราคาประหยัด จ้างทําวิจัย ราคาเท่าไหร่ จ้างทําวิทยานิพนธ์ จ้างทําวิทยานิพนธ์ราคา จ้างวิจัย ทําวิทยานิพนธ์ ทำงานวิจัย ทำงานวิทยานิพนธ์ บริการรับทำวิจัย รับจัดหน้าวิทยานิพนธ์ รับจ้างทำ is รับจ้างทํางานวิจัย ราคาถูก รับจ้างทํารายงาน รับจ้างทําวิทยานิพนธ์ รับจ้างทําวิทยานิพนธ์ ราคาถูก รับจ้างเขียนรายงาน รับทำ is รับทำ powerpoint รับทำ spss รับทำ thesis รับทำดุษฎีนิพนธ์ รับทำวิจัย รับทำวิจัยราคาถูก รับทำวิทยานิพนธ์ รับทำสารนิพนธ์ รับทำแบบสอบถาม รับทำโปรเจคจบ รับทํา thesis รับทํางานวิจัย รับทําปริญญานิพนธ์ รับทํารายงาน รับทําวิจัย ป.ตรี รับทําวิทยานิพนธ์ รับทําวิทยานิพนธ์ ป.โท รับทําวิทยานิพนธ์ ราคา รับทําวิทยานิพนธ์ราคาเท่าไหร่ รับทํา สารนิพนธ์ รับแปลงานวิจัย ราคารับทำวิทยานิพนธ์ วิจัย

Table of Contents

On Key

Related Posts

รู้หรือไม่ ผู้บริโภค 85% เชื่อถือโฆษณาในรูปแบบสปอนเซอร์ทีม-การแข่งขัน

รู้หรือไม่ ผู้บริโภค 85% เชื่อถือโฆษณาในรูปแบบสปอนเซอร์ทีม-การแข่งขัน

รู้หรือไม่ ผู้บริโภค 85% เชื่อถือโฆษณาในรูปแบบสปอนเซอร์ทีม-การแข่งขัน . เนื่องจากการสำรวจพฤติกรรมการรับสื่อและทัศนคติต่อการรับชมโฆษณา-แคมเปญการตลาดของผู้บริโภคชาวไทยในช่วง 6 เดือนที่ผ่านมา ทางบริษัท นีลเส็น มีเดีย ประเทศไทย หนึ่งในบริษัทวิจัยสื่อ-การตลาดรายใหญ่ สามารถประมวลเป็นเทรนด์สำคัญที่จะส่งผลกับการสื่อสารและทำการตลาดของภาคธุรกิจในปี 2566 นี้ . พบว่า ผู้บริโภค 85% เชื่อถือโฆษณาในรูปแบบสปอนเซอร์ทีม-การแข่งขัน และ 61% เลือกซื้อสินค้าที่เป็นสปอนเซอร์การแข่งขัน รวมถึง

มือใหม่ทำงานวิจัยต้องควรรู้

มือใหม่ทำงานวิจัยต้องควรรู้

Thesis Thailand ขอแนะนำ “ มือใหม่ทำงานวิจัยต้องควรรู้ ” . เนื่องจากการทำวิจัยหาความรู้ หรือการทำวิจัยพัฒนาสิ่งใด  มันมีกระบวนการขั้นตอนที่เกิดจากต้องวิเคราะห์ สังเคราะห์ เพื่อประมวลเป็นความรู้ และนำไปใช้เป็นหลักฐานเหตุผล ให้ได้ข้อสรุป “ด้วยตนเอง” เมื่อชำนาญแล้ว ค่อยขยับไปทำงานวิจัยที่ต้องการ “ค้นพบ” ความรู้ใหม่ หรือแนวทางใหม่ๆ . มือใหม่ทำงานวิจัยต้องควรรู้ คือ “ทำสิ่งใดด้วยกระบวนการวิจัย” ได้แก่

พฤติกรรมของผู้บริโภคที่อาจจะเปลี่ยนไปในยุคหลังโควิด

พฤติกรรมของผู้บริโภคที่อาจจะเปลี่ยนไปในยุคหลังโควิด

Thesis Thailand สำรวจพฤติกรรมของผู้บริโภคที่อาจจะเปลี่ยนไปในยุคหลังโควิด . เนื่องจากพฤติกรรมของผู้บริโภคมีความเปลี่ยนแปลงสำคัญในยุคหลังโควิด-19 โดยส่งผลต่อการตัดสินใจซื้อสินค้าและพฤติกรรมการบริโภคทั่วไป อาทิเช่น ผู้บริโภคที่ได้ลองซื้อของผ่านทางช่องทางออนไลน์ได้เกิดความเคยชินไปแล้ว หรือการให้ความสำคัญกับค่านิยม (Value) เพื่อให้ได้ใจลูกค้ากลุ่ม GenZ และ Millennials รวมถึงการใช้ Data เพื่อหา Insight ของผู้บริโภค และปรับกลยุทธ์การตลาดให้เหมาะสมตามอยู่เสมอ เป็นต้น นี่คือบางพฤติกรรมที่อาจมีการเปลี่ยนแปลงในยุคหลังโควิด: . . .

เจาะลึกพฤติกรรมผู้บริโภค 2023 ควรทำอย่างไรให้ได้ใจลูกค้า

เจาะลึกพฤติกรรมผู้บริโภค 2023 ควรทำอย่างไรให้ได้ใจลูกค้า

Thesis Thailand เจาะลึกพฤติกรรมผู้บริโภค 2023 ควรทำอย่างไรให้ได้ใจลูกค้า . เนื่องจากการซื้อขายสินค้าอาจจะมีองค์ประกอบคร่าว ๆ เพียงแค่ แบรนด์ สินค้า และผู้บริโภค แต่ในโลกของธุรกิจจริง ๆ กลับมีความซับซ้อนและข้อมูลมากมาย รวมไปถึงคู่แข่งในแต่ละตลาด ดังนั้นผู้ที่เข้าใจตลาดก่อน ย่อมเดินนำไปก่อนหนึ่งก้าวเสมอ ทำให้ในบทความนี้เราจะมาส่องเทรนด์พฤติกรรมผู้บริโภค 2023 ซึ่งเป็นคำภีร์พื้นฐานที่สำคัญสำหรับแบรนด์ ในการพาสินค้าและบริการของตนเอง กระโดดเข้าไปอยู่ในใจของผู้บริโภค . มีการคาดการณ์ว่าพฤติกรรมผู้บริโภค